Float switch
Type ABZMS-41
RE 50222-B/03.12
Replaces: -
English

Operating instructions

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The cover page shows an example configuration. The product supplied may therefore differ from the photo shown.

The original operating instructions were prepared in German.

Content

1 Introduction 4
1.1 Configuration 4
1.2 Field of application 4
2 Important notes
3 Assembly and connection
3.1 Tank installation 6
3.2 Connection variants and pinout7
3.3 Voltage supply variants 8
3.4 Adjustment of the switching point positioning for Mx models. 9
3.5 Adjustment of the switching points' switching function for Mx models 10
3.6 Notes on the service life extension of reed contacts 10
4 Operation 11
4.1 Switch-on 11
4.2 LED status displays 11
4.3 General key functions 12
4.4 Active key lock 13
4.5 Menu overview 13
4.6 Changing the basic settings 14
4.7 Switching outputs 21
4.8 Analog outputs 27
4.9 Diagnosis possibilities 29
5 Maintenance 32
5.1 Inspection and maintenance 32
5.2 Service and repair 32
5.3 Troubleshooting 32
6 Disposal 32
7 Technical data 33
8 Appendix: Overview menu sequence 35

1 Introduction

Read the operating instructions carefully before using the device. Particularly observe the notes in chapter 2. Otherwise, injuries or damage to property may result. Bosch Rexroth AG will not accept any liability for unauthorized changes in the device or for improper use.

1.1 Configuration

The sensors of the ABZMS41 series serve the monitoring of the filling level and/or the temperature in fluid systems, if applicable. From pure switches to the continuous filling level and temperature measurement and/or indication, this specification comprises all options.
The following models are available:

ABZMS... float switch	
M1 to M4	1 to 4 level contacts, normally closed or normally open contact
M1-T70F to M3-T70F	1 to 3 level contacts, normally closed or normally open and temperature contact $70^{\circ} \mathrm{C}$, normally closed contact (option $60 / 80^{\circ} \mathrm{C}$)
M1-TS to M3-TS	1 to 3 level contacts, normally closed or normally open contact and Pt 100 temperature sensor
M1-TA to M3-TA	1 to 3 level contacts, normally closed or normally open contact and resistance thermometer output 4 to 20 mA
RTA	Resistance measuring chain (level) and resistance thermom- eter; analog output 4 to 20 mA
D1	Display and control unit with resistance measuring chain, resistance thermometer and four programmable PNP switching outputs
D2	Display and control unit with resistance measuring chain, resistance thermometer and two programmable PNP switch- ing outputs and two analog outputs 4 to 20 mA (analog output programmable in $0-10 \mathrm{~V}, 2-10 \mathrm{~V}, 0-5 \mathrm{~V}$) Two PNP outputs can be assigned as frequency output.

1.2 Field of application

Float switch types are no safety components.

Use in explosive areas or in case of danger due to malfunction may impair safety and health.

- Don't use the float switch if in case of failure or in case of malfunction, the safety and health of persons might be impaired.
- Don't use the float switch in explosive areas.

2 Important notes

Please check before installing the device whether the specified technical data corresponds to the application parameters. Also check whether all parts belonging to the scope of delivery are completely available.
Use of the devices is only admissible if:

- The product is used under the conditions described in the operating instructions, the use according to name plate and for applications for which it is intended. In case of unauthorized changes in the device, liability by Bosch Rexroth AG is excluded.
- The limits specified in the data sheet and the instructions are complied with.
- Monitoring equipment / protective equipment has been connected correctly.
- The service and repair works not described in these instructions are carried out by Bosch Rexroth AG.
- Original spare parts are used.

These operating instructions are part of the operating equipment. The manufacturer reserves the right to change the performance, specification or the design data without advance notice. Keep the instructions for later use.
In these instructions, the following warning signs and signal words are used:

| Warning sign | Warning |
| :--- | :--- | :--- |
| | Warning of the inhalation of noxious gases |
| | Warning of corrosive fluids |

Signal word	Application
NOTE!	Signal word for important information on the product, to which particu- lar attention is to be drawn.
CAUTION!	Signal word for marking a hazard with little risk, which can lead to damage to property or minor to medium bodily injuries unless it is avoided.
WARNING!	Signal word for marking a hazard with medium risk, which will possibly lead to death or serious bodily injuries unless it is avoided.
DANGER!	Signal word for marking a hazard with high risk, which will directly lead to death or serious bodily injuries unless it is avoided.

The device may only be installed by specialists who are familiar with the safety requirements and the risks.
You must imperatively observe the safety regulations relevant to the place of installation as well as the generally valid rules of current technology. Prevent failures and thus prevent personal injuries and damage to property.

Assembly and connection

The person responsible for the system must ensure that:

- Safety instructions and operating instructions are available and complied with,
- Accident prevention regulations of the Accident Prevention \& Insurance Association are complied with; in Germany: BGV A1: Prevention principles and BGV A3: Electrical systems and work equipment,
- The admissible data and operating conditions are complied with,
- Protective devices are used and prescribed maintenance works are carried out,
- In the disposal, the legal regulations are complied with.

Maintenance, repair
Repairs at the operating equipment may only be carried out by personnel authorized by Bosch Rexroth.

- Only carry out modification, maintenance or assembly works described in these operating instructions.
- Only use original spare parts.
- When carrying out maintenance works of any kind, the relevant safety and operating provisions have to be observed.

3 Assembly and connection

3.1 Tank installation

Assembly and connection may only be performed by correspondingly trained specialists. The applicable safety regulations of the place of installation are to be complied with!

DANGER!

Danger of poisoning!

Poisonous, corrosive gases or fluids may cause serious injuries.

- Protect yourself from poisonous, corrosive gases / fluids during all works.
- Always wear inhalation protection, face protection and gloves.

DANGER!

Risk of explosion!

Risk of serious injuries due to explosions.

- Don't use the float switch in explosive areas.

For direct tank attachment, the switching tube is screwed into the intended bore (according to DIN 24557, part 2) with the GI cork seal at the tank. The mounting is realized using the enclosed screws and seals at the DIN flange. In this connection, it must be ensured that the float is freely moveable and that the distance to the tank wall and installations is sufficient.
After a possible disassembly of the float, it has to be made sure that the solenoid in the float is above the fluid level. The easiest way to check this is by means of an iron part by means of which you determine the position of the solenoid in the float.
The voltage supply is effected using the connectors.

3.2 Connection variants and pinout

Plug-in connector type K24	Version M 1 and/or 2 level contacts	Version M 1 level contact + temperature contact	$\begin{gathered} \text { Version RTA } \\ \text { Level output 4-20 mA } \\ \text { + temperature output 4-20 mA } \end{gathered}$
	$1-\mathrm{C}=\frac{\mathrm{L} 2}{\mathrm{~L} 1} \underset{\rightarrow-}{\Rightarrow} \underset{3}{\Rightarrow}$		
Plug-in connector type 2K24	2 level contacts + temperature contact	2 level contacts + temperature sensor PT 100	2 level contacts + resistance thermometer
	A B		A

Plug-in connector type K14	Version M 1 and/or 2 level contacts	Version M 1 level contact + temperature contact
	$\begin{aligned} 1-\mathrm{C}=\mathrm{L1} \quad & \Rightarrow-2 \\ & \Rightarrow-3 \\ & \Rightarrow-\mathrm{PE} \end{aligned}$	$1-c=\begin{array}{ll} \mathrm{L} 1 & \Rightarrow-2 \\ \square \mathrm{TK} & \Rightarrow \mathrm{PE} \end{array}$
	$1-c=\frac{\mathrm{L} 2}{\mathrm{~L}} \underset{\mathrm{~L} 1}{ } \Rightarrow-2$	

Plug-in connector type K6	Version M up to 4 level contacts	Version M up to 3 level contacts + temperature contact / Pt 100	Version M up to 3 level contacts + resistance thermometer
	$\begin{aligned} 1-\mathrm{C}=\mathrm{L}= & \Rightarrow-2 \\ & \Rightarrow-3 \\ & \Rightarrow-4 \\ & \Rightarrow-5 \\ & \Rightarrow-6 \\ & \Rightarrow-\mathrm{PE} \end{aligned}$		

Assembly and connection

3.3 Voltage supply variants

Function	Voltage						
	VDC 10-36					VAC 10-230	
	K24	2K24	K14	K6	K14	K6	
M1	X	-	X	X	X	X	
M2	X	-	X	X	X	X	
M3	-	-	-	X	-	-	
M4	-	-	-	X	-	-	
M1-T70F	-	X	X	X	X	X	
M2-T70F	-	X	-	X	-	X	
M3-T70F	-	-	-	X	-	-	
M1-TS	-	X	-	X	-	-	
M2-TS	-	X	-	X	-	-	
M3-TS	-	-	-	X	-	-	
M1-TA	-	X	-	X	-	-	
M2-TA	-	X	-	X	-	-	
M3-TA	-	-	-	X	-	-	
RTA	X	-			-	-	
D1	-	X			-	-	
D2	-	X			-	-	

3.4 Adjustment of the switching point positioning for Mx models

The contacts operated by the float are fastened to a galvanically gold-plated contact strip (with cm scale) by means of plastic screws. The contact housings are color-coded any may only be mounted on the contact strip in the given order. They are positioned according to the order data ex works and can be adjusted upwards or downwards retroactively (observe minimum distances!).
In models with continuous level output (RTA), no changes can be made. They are fixedly set ex works (analog output: $4 \mathrm{~mA}=$ tank empty; $20 \mathrm{~mA}=$ tank full).

For positioning the switching points, proceed as follows:

- Interrupt the voltage supply!
- Loosen the plug-in connections.
- Screw off the plug-in connector base and carefully pull it out upwards together with the adapter plug and the contact strip.
- Loosen the plastic screws at the contacts and re-position the contacts using the cm scale (it is located on the back side of the contact strip). They can be adjusted in 1 cm steps.
- In order to fasten the contacts, tighten the plastic screws manually.
- Ensure during the assembly that the adapter plug is re-applied to the contact strip in the correct way. This can be seen from the red mark at the adapter plug and the contact strip.

3.5 Adjustment of the switching points' switching function for Mx models

The contacts are designed as normally open (NO) or normally closed (NC) contact, depending on the order. As the contacts are bistable, any subsequent change in the contact function is possible by rotating the contacts by 180°. On the contact housing, there are two arrows. The arrow pointing upwards in the installed condition indicates the valid contact function (see following example).

Any information with sinking oil level.

3.6 Notes on the service life extension of reed contacts

Due to their construction, reed contacts are very durable and reliable components. Nevertheless, the following should be observed:

Contact protection

Excessive inductive loads creating high inverse voltages when a reed switch is opened can be reduced by means of the following circuit.
A) Direct voltage (DC):
protective diode parallel to the load

B) Alternating voltage (AC):

RC element parallel to the load and according to the following table.
B)

VA	10		25		50		75		100	
Voltage at the open contact	R/Ohm	C/ $/ \mathrm{F}$								
24 AC	22	0.022	1	0.1	1	0.47	1	1.0	1	1.0
48 AC	120	0.0047	22	0.022	1	0.1	1	0.47	1	0.47
115 AC	470	0.001	120	0.0047	22	0.022	22	0.047	22	0.1
230 AC	470	0.001	470	0.001	120	0.0047	120	0.022	120	0.022

4 Operation

The models without indication and control unit are immediately ready for operation after connection of the supply voltage. In the following, the operation of the models with display and control unit is described.

4.1 Switch-on

If during ongoing operation, an error message appears in the display, please observe chapter 5.3 "Troubleshooting".
After the device has been connected to the supply voltage, the software version will be shown shortly in the beginning. Directly afterwards, the display changes to the measured value display.

In the following, the function of the display and control unit is described.

4.2 LED status displays

Light-emitting diodes above the measured value display signal the status of the switching outputs. The LEDs are fixedly assigned to the switching outputs. The following table shows the factory settings for the assignment of the switching outputs to filling level and temperature.

		2 switching outputs	4 switching outputs
	LED 1 - yellow Assigned: Switching output 1	Filling level	Filling level
	LED 2 - red Assigned: Switching output 2	Temperature	Filling level
	LED 3 - yellow Assigned: Switching output 3	---	Temperature
	LED 4 - red Assigned: Switching output 4	---	Temperature

The LEDs' switching behavior (illuminated in case of closed or open switching contact) can be changed; in this connection see chapter 4.7.7.

4.3 General key functions

Operation is effected using the keys below the display.
A detailed explanation of the menu control is contained in the following chapters.

Key	Mode	Function
-	Measured value display: In the menu: At the end of the menu: After entry / selection:	Change of the display; example: Change to a subordinate menu Change to the superior menu: (Exit) signals the end of the menu Confirming and storing an entered numerical value or a function selection
A	Measured value display: In the menu:	Display of the configuration, see chapter 4.5 Going to the next menu item, numerical value or function selection. If the key is kept pressed, this is done continuously.
∇	Measured value display: In the menu:	Change to the main menu Going to the previous menu item, numerical value or function selection. If the key is kept pressed, this is done continuously.
V+**	In the menu:	Exiting the main / sub- / optional menu and going back to the measured value display
- + *	In the menu:	Changing to the next higher menu level
No action for $60 \mathrm{~s}^{*}$	In the menu:	Exiting the main / sub- / optional menu

* If the optional or setup menu is exited, the changed values will not be stored.

For selecting a menu item and setting the values, proceed as follows:

- Open the main menu by means of the key.
- Select the submenu with the $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ keys and open the submenu using the key.
- Select the next submenu with the $\boldsymbol{\nabla}$ and $\mathbf{\Delta}$ keys, if applicable, and open it using the key.
- Select the desired menu item using the $\boldsymbol{\nabla}$ and $\mathbf{\Delta}$ keys and open the value list using the key.
- Set the value using the $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ keys and confirm it using the $>$ key.

The changed settings are stored and the device returns to the submenu.

- Exit the submenu by selecting the EXIT menu item and confirming it using the key.

The device returns to the superior menu or the measured value display.

4.4 Active key lock

When the key lock is activated, the following display will appear instead of the main menu when calling the menu using the ∇ key: 4 The active number is marked by a point.

- Enter the code using the $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ keys and confirm it using the key.

The active number is moved one digit to the right.
After entry of the 3rd number, the main menu opens.
If a wrong numerical code is entered, the device jumps back to the measured value display. If you have forgotten the password, you can access the menu at any time by means of the master code 287.
You can cancel the key lock by resetting the code with the entry 000 in the Lac menu item in the "Basic ext. functions" bEF submenu.

4.5 Menu overview

The menu structure is based on the VDMA standard sheet 24574 et sq. The menu has a hierarchic structure. The topmost menu level contains the main menu entries, e.g. $\square 1$ I, $E E M P, ~ b E F, ~ d, ~ R, E$. Each main menu comprises more submenu items.
The menu items may vary depending on the device configuration. Not all menu items described in the following may be available in your device.

- You can call the configuration by pressing the $\mathbf{\Delta}$ key in the display mode.

A 4-digit code will be displayed, e.g.

Whereas the 4 digits tsav have the following meaning:	
t: Type	$t=$ Temperature measurement
	$0=$ Level and temperature measurement
s: Number of switching outputs	2 or 4
a: Number of analog outputs	0 or 2
v: Assembly type of the devices	$i=$ Standard assembly (tank installation)

The individual menu items will not appear if the option is not available. Example: With $\mathrm{a}=0$, the menu items for setting the analog output are not available. You can then skip the description of these points.
The structure of the main menu "Level" (a, l) and "Temperature" (LEMP) is identical. Here, the settings for the switching outputs and/or the analog outputs (if available) are made.
The basic settings oft he device can be changed. Generally valid settings are made in the "Basic ext. functions" (bEF) menu. These settings should be made first as they influence the displays and setting possibilities in the individual menus. Such settings include e.g. the units used and the assignment of the switching outputs to filling level and temperature measurement. The assignment of the analog outputs cannot be changed.
In addition, diagnosis possibilities are available in the "Diagnostic" menu.
For the detailed presentation of the entire menu structure please refer to the end of these instructions.

4.6 Changing the basic settings

In the "Basic ext. functions" (bEF) menu, the generally valid basic settings are made. These settings influence the presentation in the measured value display as well as the setting options in the "Level" and "Temperature" menus. Assignment of the switching outputs to the filling level and/or temperature measurement (if available) can be changed here.

- In order to access the main menu, press the $\boldsymbol{\nabla}$ key.
- Select the bEF menu item using the $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ keys and open the menu using the key.

4.6.1 Determining the filling level unit

Here, the displayed unit symbol for the filling level is determined.

Optional settings: [-I -, cn, in, Lit, CAL, non]

The following options are available:
[lle

Percentage

cm

Liter

None

If "without unit" is selected, the display will scale the measured values to a four-digit output.

The measured values are not converted automatically. After changing the unit (if necessary), the measurement range should be scaled (see "Level" artil and olo menu)

4.6.2 Determining the temperature unit

Here, the displayed unit symbol for the temperature is determined.

If the setting is changed, all related settings like e.g. setting of the switching points are changed accordingly.

4.6.3 Re-assignment of the switching outputs

Change of the switching output assignment is here described for switching output 1. The procedure can be transferred to all other switching outputs.

The switching outputs 1 to n can be freely assigned to the filling level or temperature measurement. The assignment will influence the appearance of the filling level an ' and temperature LEMP menu. In the factory setting, switching output OUT 1 is assigned to the filling level.

Example: OUT 1 is to be assigned to the temperature. For this purpose, r.ou i must be set to $\varepsilon E \cap$. This results in the shifting of the out i setup menu from the "Level" menu into the "Temperature" menu. The procedure for changing the settings does not change.

In the re-assignment of the switching outputs, all related settings have to be checked! The values set in advance are not adjusted automatically! The assignment of the LEDs to the status display does not change.

Assignment of the other switching outputs to the filling level or temperature measurement is realized in the same way as for switching output 1.

- Perform the same steps as described for the switching output OUT 1.

4.6.4 Setting the display's update rate

Depending on the application, the display's update rate can be set. The display can also be switched off completely.

Error messages will be displayed despite switched-off display.

4.6.5 Activating / deactivating the key lock

In order to prevent unauthorized changes in the device settings, a key lock can be setup.

The key lock is activated if at least one number >0 is entered. During the entry, the active number is marked with a point.

Setting range: 000 to 999	Open the value list by means of the \rightarrow key: Set the figure using the ∇ and \triangle keys $(0$ to 9) and confirm it using the \rightarrow key.
The active number is moved one digit to the right.	
Finally confirm the code by means of the \rightarrow key.	
The device returns to the submenu.	

1
Canceling the key lock with the entry: 000

4.6.6 Filling level scaling

The display range is scaled between the highest and the lowest point of the float. The display accuracy and the resolution for the determination of the switching outputs for the filling level are also influenced by this scaling.

The factory setting of the switching points and the display is shown in the following figure:

Factory settings: Display for models with analog output		(10)	Factory settings: Display for models without analog oupput Example: Total length $\mathrm{L}=370 \mathrm{~mm}$ $\mathrm{x}=55 \mathrm{~mm}$ for float SK221: \Rightarrow Display Min: -31,5 [cm]

Models with analog output:

The display increases when the filling level increases so that at the lowest point possible, 0% and with the highest point possible 100% are displayed. These values can be changed as described below.

Models without analog output:

As the installation situation is not known in the factory, the distance of the float to the flange level in cm is shown as pre-setting. As with a falling filling level, this results in a greater value, this is relativized by putting a minus sign in front of the display value. In a level switch with a length of 370 mm , the value rises e.g. from $-31.5(\mathrm{~cm})$ to $-2.5(\mathrm{~cm})$ when the level rises. These values can be changed as described below.

4.6.7 Filling level: Maximum display value

Here, the largest display value (upper limit of the measurement range) for the maximum filling level is determined.

Assignment of the largest display value (upper limit of the measurement range) to the maximum filling level.

Setting range:
-999... 9999

In order to avoid malfunctions, the settings of the level outputs should be checked and/or adjusted after any change in the value.

4.6.8 Filling level: Minimum display value

Here, the smallest display value (lower limit of the measurement range) for the minimum filling level is determined.

Assignment of the smallest display value (lower limit of the measurement range) to the minimum filling level.

Setting range:
-999... 9999

In order to avoid malfunctions, the settings of the level outputs should be checked and/or adjusted after any change in the value.

4.6.9 Restoring the factory settings (reset)

By means of the "Reset" (-55) function, the factory settings can be restored. When doing so, all changes will be lost. As the limits are also reset, the settings for the filling level and the temperature must mandatorily be checked.

The following options are available:

 maintained

Condition as supplied: Yes, the settings are reset to the default factory settings.

The factory settings are as follows：
Definitions：

5px／－rx	Switching point／switch－back point x
d5x／drx	Switch－on delay／switch－back delay for switching output x
Pxin／ixio	Maximum and minimum measured value for the output
Roux	Signal form of the analog output
－ux	Switching characteristics of the switching output x
ロum／L．un！	Unit for filling level／temperature
－ 1 ¢	Maximum／minimum filling level
r．ou	Assignment of the switching output x to the filling level or temperature monitoring
－ 5	Display update rate
Lac	Key lock
Sum	Logged switching output
doinf	Delay for recording the minimum／maximum filling level
dthin	Delay for recording the minimum／maximum temperature

Version with 4 switching outputs：

Switching outputs		Basic settings		Diagnosis	
5Pi／rP：＊	－（L－7．0 cm）／－（L－6．0 cm）＊	ロ．LIT	En	Suiou	aut ！
d5ilariloui		ட．ルா！	［	םロ！7\％	010
5P己／，P己＊	－（L－9．0 cm）／－（L－8．0 cm）＊	－ 4	$-2.5 \mathrm{~cm} * *$	跇喏	010
		0.10	－（L－x） cm^{*}		
5アコ／ヶアコ＊	$70 / 55$［	r．au i	－1		
は53／が3／ロu3		「．ロuE	a！ 1		
5，94／r－94＊	80／75［	1．043	LEMP		
		r．au＇	LEMP		
		d 5	FR5L		
		Lac	000		

＊Relating to the total length L of the level switch
$x=55 \mathrm{~mm}$ for stainless steel float SK 221
$x=35 \mathrm{~mm}$ for PU float SK 604
＊＊Minimum distance to the flange

Version with 2 switching outputs and 2 analog outputs：

Switching outputs		Basic settings		Diagnosis	
5Pi／rPi＊	$5 \% / 2$ \％	ロッルフ！	－i－（\％）	Suİu	aut ！
d5 l／dil l 吅 l		டルハー	［	datif	01.1
5PE／－PE	$50 / 55 \%$	－H1，	100%＊＊	d6．7n	010
		－La	\％\％		
		rou i	－1		
Analog outputs		r．oul	LEMP		
品仿／品治口1 Rou i	四 10口1／i	－ 5	FRSt		
Roue？	䂞／100／1	Lag	0100		

＊Relating to the total length L of the level switch $-x$
$x=55 \mathrm{~mm}$ for stainless steel float SK 221
$x=35 \mathrm{~mm}$ for PU float SK 604
＊＊Minimum distance to the flange $=25 \mathrm{~mm}$

4.7 Switching outputs

All switching outputs are set in the same way. The number of the switching output is therefore shown with x. Call up the switching output to be set via the menu of the corresponding measurement (a, i or LEMP).

The factory assignment of the switching outputs can be seen from the following table.

Switching output \mathbf{x}	Assignment with 2 switching outputs	Assignment with 4 switching outputs
1	Filling level	Filling level
2	Temperature	Filling level
3		Temperature
4		Temperature

The assignment of the switching outputs as well as more basic settings referring to all switching outputs can be changed in the "Basic ext. functions" menu, see chapter 4.6.3.
In the "Extended functions" submenu, more settings for each individual switching output can be made, which influence e.g. the switching behavior of the output. Here, the output can also be tested.

4.7.1 Switching output x : Definition of the switching characteristic

The switching characteristic for the output is determined in the following menu:

Hysteresis function

Hysteresis function as normally open contact

Hnc

Hysteresis function as normally closed contact

The following options are available:

Normally open or closed contact function in which the output signal will be set if the set switching points are exceeded. If the set switch-back point is undershot, the output signal will be deleted.

Here, normally open contact means that the PNP switching output is closed above the SPx switching point and opens again if the rPx switch-back point is undershot.

Here, normally closed contact means that the PNP switching output is open above the SPx switching point and closes again if the rPx switch-back point is undershot.

Also refer to the explanation in the following drawing.

In order to increase the edge steepness of the rectangular signal, we recommend loading the switching output with a $10 \mathrm{k} \Omega$ resistance.

i
The switching function may have different designations.

4.7.2 Switching output x: Upper switching limit (switch-on point)

The upper switching limit for the OUT 1 switching output is set in the following submenu:

The switching point must be selected within the range limits (see "Basic ext. functions" menu).

If the OUT 1 switching output has been assigned the "Window" function, EH
The set value corresponds to the upper window limit.
If the OUT 1 switching output has been assigned the "Frequency output" function, \mathcal{E}, HI will be displayed.
The set value corresponds to the frequency 100 Hz .

4.7.3 Switching output x : Lower switching limit (switch-back point)

The lower switching limit for the OUT 1 switching output is set in the following submenu:

The switch-back point must be selected within the range limits.
If the OUT 1 switching output has been assigned the "Window" function, FI

The set value corresponds to the upper window limit.
If the OUT 1 switching output has been assigned the "Frequency output"

The set value corresponds to the frequency 1 Hz

4.7.4 Switching output x: Switch-on delay

In the "Extended functions" εF; menu, more settings for switching output 1 can be made. The submenu is located on the second submenu level.
The switching and switch-back delay time prevent the alarm from responding too frequently in case of unstable conditions. The switching delay is set in the following menu:

Setting range:
$0 . . .100$ seconds

Time period in seconds during which the signal must be continuously available for the switching output to respond.
i
If the OUT x switching output has been assigned the Window function, the set value corresponds to the switch-on delay detecting the valid achievement of the measuring window.

If the OUT x switching output has been assigned the Frequency output function, this value will have no effect.

4.7.5 Switching output x : Switch-back delay

The switch-back delay is set in the following menu:

Setting range: 0... 100 seconds

Delay of the switch-back signal for OUT 1
Time period in seconds during which the signal must be continuously available for the switching output to respond.

If the OUT 1 switching output has been assigned the Window function, the set value corresponds to the switch-on delay detecting the valid leaving of the measuring window.

If the OUT 1 switching output has been assigned the Frequency output function, this value will have no effect.

4.7.6 Switching output x : Testing of the switching output

The switch-back delay is set in the following menu:

$\square \square \square$	Test possibility for the switching output Options when setting oul to Hina / Hinc / Fna / Fnc:		
Optional settings: 	\square Normal operation of the switching output	Permanently deactivating the switching output	Permanently activating the switching output
	Options when setting oul		
	\square Normal operation of the frequency output		Output Frequency 100 Hz

After termination of the test, you should imperatively set the function to nop normal operation.

4.7.7 Changing the display function of the status LED

The switching status of the output is signaled by the LEDs in the display. The assignment of the LED to the switching output can be seen from the following table:

Numbering LED	Switching output x	Assignment with 2 switching outputs	Assignment with 4 switching outputs
$\begin{gathered} \text { LED } \\ \left.\qquad \begin{array}{ccc} 1 & 2 & 3 \\ \left\lvert\, \begin{array}{rll} \square & \square & \square \end{array}\right. \\ {[} & & \\ \hline \end{array}\right] \end{gathered}$	1	LED 1 - yellow	LED 1 - yellow
	2	LED 2 - red	LED 2 - red
	3		LED 3 - yellow
	4		LED 4 - red

In the factory setting, the LED indicates the physical condition of the PNP switching output (switching output closed - LED illuminated).
You might want the logical function of the display to work in a different way than the physical signal on the switching output. You can therefore also reverse this display in this menu item (switching output open - LED illuminated).
Example using the temperature:
You have 2 switching outputs for the temperature, which are set as follows:

- Upper switching contact: Max. contact, rising NO contact. The LED is illuminated if the maximum temperature value is exceeded and the temperature is outside the desired range. So the indicated status is "error" if the LED is illuminated.
- Lower switching contact: Min. contact, rising NO contact. So with the factory setting, the LED is illuminated if the minimum temperature value is exceeded. So in this case, the LED would be illuminated if the status is ok.

Operation

The table shows an example with the factory setting and with inverted status function for LED3. The switching points are defined as follows:
$\mathrm{SP} 3=70^{\circ} \mathrm{C}, \mathrm{rP} 3=65^{\circ} \mathrm{C}$
$\mathrm{SP} 4=80^{\circ} \mathrm{C}, \mathrm{rP} 4=75^{\circ} \mathrm{C}$

	Factory setting	Status function LED inverted	Condition	Status
A			Temperature increases to $>70^{\circ} \mathrm{C}$ PNP switching output 3 closed	OK
B	LED4 and LED3 ON		Temperature increases to $>80^{\circ} \mathrm{C}$ PNP switching output 4 closed	Error
C		$\square \square \square \square$ $74^{\square E}$ LED3 OFF	Temperature decreases to $<75^{\circ} \mathrm{C}$ PNP switching output 4 open	OK
D	$64[$ LED3 OFF		Temperature decreases to $<65^{\circ} \mathrm{C}$ PNP switching output 3 open	Error

Here, you can reverse the LED status function for a contact: the LED is illuminated if the contact is open, i.e. below the minimum temperature, and the "Error" status is indicated again if the LED is illuminated. The recording of events particularly depends on the lighting up of the LED (see chapter "Diagnosis possibilities", 4.9).

The recording of events particularly depends on the lighting up of the LED (see chapter "Diagnosis possibilities", 4.9).

4.8 Analog outputs

4.8.1 Analog output x : Assignment of the upper limit

Here, it is assigned at which temperature the maximum analog signal is to be output. The setting is made in the menu.

Setting range $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ $\left(32^{\circ} \mathrm{F}\right.$ to $212^{\circ} \mathrm{F}$)

- Open the value list by means of the key.
- Set the value using the $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ keys and confirm it using the key (e.g. $10^{\circ} \mathrm{C}$).

The device returns to the submenu.

The set output range must not be selected to be less than 10% of the

If the selected range is too small, the analog value output may show steps.

4.8.2 Analog output x : Assignment of the lower limit

Here, it is assigned at which temperature the minimum analog signal is to be output. The setting is made in the menu.

\square	Open the value list by means of the Set the value using the ∇ and Δ keys and confirm it using the - key (e.g. $\left.80^{\circ} \mathrm{C}\right)$.
Setting range $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ $\left(32^{\circ} \mathrm{F}\right.$ to $\left.212^{\circ} \mathrm{F}\right)$	The device returns to the submenu.

The set output range must not be selected to be less than 10% of the

If the selected range is too small, the analog value output may show steps.

Operation

4.8.3 Analog output x : Determining the signal form

The analog output can be defined as voltage or current output with different value ranges. The setting is made in the menu.

4.8.4 Analog output x : Testing the analog output

The analog output can be tested, as well. The largest, the medium and the smallest analog value can be output one after the other. The setting is made in the menu

After termination of the test, you should imperatively set the function to nop normal operation.

4.9 Diagnosis possibilities

The device is able to log events for a switching output. An event is defined as the lighting up of the LED. I.e. the recording of the switching processes depends on the setting of the LED switching function (see 4.7.7).
The settings and the analysis can be made here.

Only one switching output can be logged. The switching output to be logged is set in the switching output log alarm 5úau menu item.

- In order to access the main menu, press the $\boldsymbol{\nabla}$ key.
- Select the di, \boldsymbol{r} menu item using the $\boldsymbol{\nabla}$ and $\mathbf{\Delta}$ keys.

From here, you can access different diagnosis values and logs regarding the filling level and temperature monitoring.

- Open the menu by means of the key.

Now, you can change and/or call the diagnosis settings.

4.9.1 Calling the log book

Here, the last 6 events of the logged switching output can be called or deleted.

Diagnostic	d^{\prime}, R
Diagnostics menu	

The log entries are displayed in the following way:

- Latest event ciar ; occurred before x hours (h) / days (d),
- events 2 to 5 occurred before x hours / days,
- the oldest event uiarb occurred before x hours / days,
- Delete function (---).
* Not yet assigned, only 4 events have occurred

Example:

Liar $\} \Leftrightarrow\left\{\begin{array}{l}\text { inh , key } \nabla\end{array}\right.$
Liar? \Leftrightarrow 2.4ヶ, key $\boldsymbol{\nabla}$, $\boldsymbol{\triangle}$

Lar $5 \Leftrightarrow$ man *, key $\boldsymbol{\nabla}, \mathbf{\Delta}$
Lurb \Leftrightarrow man ${ }^{*}$, key $\boldsymbol{\nabla}, \mathbf{\Delta}$
--- , key $\boldsymbol{\Delta}$; $\boldsymbol{\nabla}$ = delete

The index of entry x and the time are indicated alternately, e.g. sor $; \Leftrightarrow$ 线 for the latest event 1.4 hours ago.
Confirming the display $---\infty$ bey deletes the event list and returns to the submenu.

If no events have been recorded, the display changes between sior and non. The stored data will be overwritten after 6 months.

Operation

4.9.2 Maximum and minimum filling level

Here, the stored maximum and minimum filling level are displayed or deleted.

The values are displayed in the following way	Example:
- Maximum filling level value, - Reached x hours / days ago, - Minimum filling level value, - Reached x hours / days ago, - Delete function.	

	Confirmation of the display $-\infty-\infty$ key deletes the event list and returns to the submenu.
Menu order: Max. value, time Min. value, time delete	

The stored data will be overwritten after 6 months.

4.9.3 Maximum and minimum temperature

Here, the stored maximum and minimum temperature are displayed or deleted.

The values are displayed in the following way	Example:
- Maximum temperature value, - Reached x hours / days ago, - Minimum temperature value, - Reached x hours / days ago, - Delete function.	

| 1 | Confirmation of the display
 key deletes the event list and returns to the submenu. |
| :--- | :--- | :--- |
| Menu order:
 Max. value,
 time
 Min. value,
 time
 delete (reset) | |

The stored data will be overwritten after 6 months.

4.9.4 Determining the switching output to be logged

Here, the switching output to be logged is selected. Only one switching output can be logged.

Diagnostic	d, R
Diagnostics menu	

	Open the value list by means of the key. Select the value using the $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ keys and confirm it using the key.
Selection: out i to out	

The values are stored from the volatile memory into the non-volatile one approx. every three hours.

The stored data will be overwritten after 6 months.

4.9.5 Delay until storage of the min/max filling level

In order to record reliable values in case of an unstable fluid level, a delay time until storage of the minimum and maximum filling level can be set. Here, the time period in seconds is indicated during which the signal must be continuously available before the filling level will be logged.

Setting range:
$0 . .100$ seconds

- Open the value list by means of the key.
- Set the value using the $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ keys and confirm it using the key (e.g. 5 (seconds)).

The device returns to the submenu.

4.9.6 Delay until storage of the min/max temperature

In order to record reliable values in case of temperature fluctuations, a delay time until storage of the minimum and maximum temperature can be set. Here, the time period in seconds is indicated during which the signal must be continuously available before the temperature will be logged.

Diagnostic	$d_{1} R$
Diagnostics menu	

[^0]
Maintenance

5 Maintenance

5．1 Inspection and maintenance

The device is working in a maintenance－free way．

5．2 Service and repair

If an error occurs during operation，the following table provides troubleshooting information．
If after removal of possible failures and switch－on of the mains voltage，the device does not function correctly，it must be checked by the manufacturer．For this purpose，please put the device in suitable packing and return it to one of the Bosch Rexroth service representations．
Please refer to www．boschrexroth．com／adressen for addresses of service repre－ sentations．

5．3 Troubleshooting

In case of an error，all outputs are de－energized．The four LEDs flash．Errors remain stored in the device until switch－off．

Problem／failure	Possible cause	Remedy
No display	No supply voltage	Check cables and replace，if necessary
Error messages in the display：Change between $E_{r r}$ and $E_{\text {xxx }}$ e．g．		ETrid \Leftrightarrow E ¢
C母ロi Error 01	Ambient temperature too low	Comply with the limits
$[母 \square \square$	Ambient temperature too high	Comply with the limits
Cツ®4 Error 04	Pt 100 defective（short circuit）	Replace the feed line Pt100 Send in the device for repair
Error 08	Pt 100 defective（cable break）	Replace the feed line Pt100 Send in the device for repair
E 18 Error 16	Reed chain defective（short circuit）	Replace the feed line Send in the device for repair
［】】］Error 32	Reed chain defective（feed line open）	Replace the feed line Send in the device for repair

6 Disposal

In the disposal，the legal regulations of the country of use are to be observed， particularly the regulations regarding the disposal of electronic components．

7 Technical data

general	
Installation position:	Vertical $\pm 10^{\circ}$
Medium temperature range	-20 to $+70^{\circ} \mathrm{C}\left[-4\right.$ to $\left.+158{ }^{\circ} \mathrm{F}\right]$
Ambient temperature range	-20 to $+85^{\circ} \mathrm{C}\left[-4\right.$ to $\left.+185{ }^{\circ} \mathrm{F}\right]$
MaterialSliding tube $\varnothing \quad 20 \mathrm{~mm}[0.79$ inch $]$ CU alloy Float 1.4571 Flange PA12 $+25 \mathrm{GF}(25 \%$ of glass fiber $)$ Protective tube \varnothing Stainless steel 1.4301	

hydraulic			
Maximum operating pressure	bar [psi]	1 [14.5]	
Hydraulic fluid			
Density	$\mathrm{g} / \mathrm{cm}^{3}$	> 0.8	
Resistance			
Mineral oils		HLP according to DIN 51524	Resistant
Flame-resistant	Emulsions	HFA-E according to DIN 24320	Resistant
	Water solutions	HFC	Resistant
	Phosphoric acid esters	HFD-R according to VDMA 24317	Resistant
	Organic esters	HFD-U	Resistant
Fast biodegradable	Triglycerides (rape seed oil)	HETG	Resistant
	Synthetic esters	HEES	Resistant
	Polyglycols	HEPG	Resistant

Technical data

electric
Protection class according to DIN EN 60529
Plug-in connection

Reed contacts of the float switches with connection K24 for mating connector M12x1, 4-pole

Voltage range	VDC	10 to 36
Max. switching current	A	0.5
Max. contact load VA	10	

Temperature contacts of the float switches with connection K24 for mating connector M12x1, 4-pole

Voltage range	VDC	10 to 50
Max. switching current	A	0.5
Max. contact load VA	10	
Max. switching cycles	K	100000
Response tolerance	K	± 3 with max. $1 \mathrm{~K} / \mathrm{min}$
Hysteresis	$\mathrm{K} / \mathrm{min}$	up to 10 with $\mathrm{max} .1 \mathrm{~K} / \mathrm{min}$
Max. temperature change velocity	1	

Reed contacts of the float switches with connection K14/ K6

Voltage range	VDC/VAC	10 to 230
Max. switching current	A	0.5
Max. contact load VA	10	

Temperature contacts of the float switches with connection K14/ K6

Voltage range	VDC/VAC	10 to 230
Max. switching current	A	0.5
Max. contact load VA	10	
Max. switching cycles	K	100000
Response tolerance	K	± 3 with max. $1 \mathrm{~K} / \mathrm{min}$
Hysteresis	$\mathrm{K} / \mathrm{min}$	up to 10 with max. $1 \mathrm{~K} / \mathrm{min}$
Max. temperature change velocity	1	
Pt 100	${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$	
Sensor element	K	Pt 100 class B DIN EN 60751
Temperature measuring range 100 [32 to 212$]$		
Accuracy	± 0.8	

Resistance measuring chain and resistance thermometer with connection K24 for mating connector M12x1, 4-pole

Operating voltage		VDC	10 to 36
Signal output		mA	4 to 20 (alternatively 0 to 10,2 to 10 or 0 to 5 V can be set)
Resolution resistance measuring chain		mm	5
Max. load		Ω	(U-9.0 V) / 0.02 A
Measuring range temperature		${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$	0 to 100 [32 to 212]
Display and control unit			
Supply voltage		VDC	10 to 32
Display range		${ }^{\circ} \mathrm{C}$ [${ }^{\circ} \mathrm{F}$]	-20 to $+120[-4$ to +248$]$
Alarm adjustment range	Temperature	${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$	0 to 100 [32 to 212]
	Level	\% / liter [US gal]	0 to 100 / 0 to 999 [263.91]
Switching points			4 programmable switching outputs (2 level + 2 temperature)
Housing design			PA, IP 65 (antistatic)

Display	4 digit seven-segment LED display
Current consumption upon switch-on	approx. 100 mA for 100 ms
Current consumption in operation	approx. 50 mA with UB 24 V
Switching output	PNP, max. 0.5 A switching power
Max. ambient temperature	-20 to $+70[-4$ to +158$]$
Accuracy	1% of the measurement range end value
Operation	3 keys

8 Appendix: Overview menu sequence

Rexroth

Bosch Group

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone: +49 (0) 93 52-180
info.hydraulics@boschrexroth.de
www.boschrexroth.com

[^0]: dt.nn

 - Open the value list by means of the key.
 - Set the value using the $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ keys and confirm it using the key (e.g. 5 (seconds)).
 Setting range:
 0... 100 seconds The device returns to the submenu.

